# WIND IS WIND POWER

## Two methods to improve turbulence estimates above a forest in a CFD model

WindEurope conference, Amsterdam 29 November 2017

windsim

PRESENTED BY: Dr. Catherine Meissner, Geoffrey DeSena

#### Content

- 1. Motivation
- 2. Wind tunnel set-up
- 3. New methods
- 4. Application to a real wind farm
- 5. Conclusions

#### **Motivation**

- WindSim users are satisfied with the wind speed and turbulence intensity (TI) calculations of the WindSim CFD software over forested areas (Envision/Siemens presentation today, EON presentation at WindEurope conference last year).
- The absolute cross-prediction error at 80-100 m above ground is below 5% for wind speed and around 10% for TI for most of the sites shown in these validations.
- WindSim simulates the relative change of TI above the forest very well.

#### **Motivation**

But there is always room for improvement:

- Wind Speed profiles inside the forest can be different from observations
- Absolute TI values inside and right above the forest can be too high

New forest data sets are available which give information about the vertical density distribution inside the forest => should we use them?

Seeking new parameterization to limit TI values and create a more realistic profile inside and right above the forest

## Wind tunnel

- Recreated wind tunnel from Meroney experiment (1968)
- Selected for its use of zero-pressure-gradient ceiling and the inlet wind speed and TI profile which is the same as the WindSim standard set-up
- Wind speed and turbulence intensity data was collected at many locations downstream the forest edge
- Wind tunnel dimensions 2x2x26 m



FIG. 3. Meteorological wind tunne and artificial tree canopy.



#### WindEurope Conference, Amsterdam 28 - 30 November 2017

#### Wind tunnel

• Inlet wind conditions very similar between measurements and CFD model



#### New methods

We can try to produce a more reasonable wind profile and to reduce the TI inside and near the forest by two methods:



Use a variable leaf area density

Closure coefficient modification

$$S_k = C_2(\beta_p |U|^3 - \beta_d |U|k)$$

$$S_{\epsilon} = C_2 \left[ C_{\epsilon 4} \beta_p \left( \frac{\epsilon}{k} \right) |U|^3 - C_{\epsilon 5} \beta_d |U| \epsilon \right]$$

## Method 1: Variable leaf area density

# Generated LAD profile based on the tree geometry and varied it by $\pm 20\%$ to test sensitivity



#### Method 1: Variable leaf area density



### Method 1: Variable leaf area density



## Method 2: Closure coefficient modification

Closure coefficients

$$\begin{split} S_k &= C_2(\beta_p |U|^3 - \beta_d |U|k) & \beta_p &= \mathsf{TKE \ production} \\ \beta_d &= \mathsf{TKE \ destruction} \\ S_\epsilon &= C_2 \Big[ C_{\epsilon 4} \beta_p \left( \frac{\epsilon}{k} \right) |U|^3 - C_{\epsilon 5} \beta_d |U|\epsilon \Big] & C_{\epsilon 5} &= \mathsf{EP \ destruction} \\ \end{split}$$

• Lopes hypothesis

Lopes (2011) used LES to show that forest only acted as sink =>  $\beta_p$  was unnecessary (and thus also  $C_{\epsilon_4}$ )

## Method 2: Closure coefficient modification

#### Coefficient combinations which have been tested:

| Source         | β <sub>p</sub> | β <sub>d</sub> | C <sub>ε4</sub> | C <sub>ε5</sub> |
|----------------|----------------|----------------|-----------------|-----------------|
| Standard       | 1.00           | 6.51           | 1.24            | 1.24            |
| Dalpé & Masson | 1.00           | 5.03           | 0.79            | 0.79            |
| Lopes Long     | 0              | 3.80           | 0               | 0.79            |
| Lopes Edge     | 0              | 4.11           | 0               | 0.68            |
| Lopes Original | 0              | 4.00           | 0               | 0.90            |
| Sanz calc'd    | 0              | 3.00           | 0               | 0.83            |

#### Method 2: Closure coefficient modification



#### Method 2: Closure coefficient modification



## Application to a real wind farm

#### TI cross-checking results

| Reference<br>mast | Standard<br>Forest | Lopes<br>Forest |
|-------------------|--------------------|-----------------|
| Mast 1            | 19.27%             | 9.67%           |
| Mast 2            | 12.54%             | 4.78%           |
| Mast 3            | 11.54%             | 6.60%           |
| Mast 4            | 23.25%             | 6.91%           |
| Mast 5            | 12.51%             | 9.04%           |

#### Conclusion

- Using variable leaf area density instead of a constant value does improve the TI simulation results. If such data is available for a site it might be worth using it
- Lopes modification for turbulence coefficients seems to improve the TI simulation
- More wind tunnel validations and validations at real sites will follow

Thank you

WindSim AS Fjordgaten 15 3125 Tønsberg, Norway Tel: +47 33 38 18 00

#### WindSim France

3 Rue du Fin F-60410 Saint Vaast de Longmont, France Tel: +33 683 26 08 27

#### catherine.meissner@windsim.com

WindSim Americas 2945 Townsgate Road Westlake Village California 91361, USA Tel: +1 805 216 0785

Suite # 617 Regus Milenia Business Park

Phase 2, Level - 6, Campus 4B, No - 1 43,

Dr.M.G.R Road Kandanchavady, Perungudi

WindSim India

Chennai 600 096, India Tel: +91 98 4032 2786

#### WindSim Brasil

Market Place II, Av. Doutor Chucri Zaidan, 940 16º andar, Vila Gertrudes São Paulo – SP 04583-110, Brasil Tel: +55 11 5095 3430

#### WindSim Sub-Saharan Africa

16th Floor Norton Rose House Riebeeck Street Cape Town, 8000, South Africa Tel: +27 79 367 2593 WindSim China

No. 101 Shaoyang Beili Chaoyang District 100029 Beijing, China Tel: +86 186 1029 1570